I/Q Imbalance Self-Interference Coordination (References)


[1] X. Li and M. Ismail, Multi-Standard CMOS Wireless Receivers: Analysis and Design, ser. The Springer International Series in Engineering and Computer Science. Springer US, 2002, no. 675.

[2] Y. Tsai, C.-P. Yen, and X. Wang, “Blind frequency-dependent I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp. 1976–1986, Jun. 2010.

[3] L. Anttila, M. Valkama, and M. Renfors, “Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2099–2113, Jul. 2008.

[4] H. Zamat and C. R. Nassar, “Introducing software defined radio to 4G wireless: Necessity, advantage, and impediment,” J. Commun. Netw., vol. 4, no. 4, pp. 1–7, Dec. 2002.

[5] B. Razavi, RF Microelectronics. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[6] Y. Zou, M. Valkama, and M. Renfors, “Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2496–2508, Jun. 2008.

[7] A.-A. A. Boulogeorgos, N. D. Chatzidiamantis, and G. K. Karagiannidis, “Spectrum sensing under hardware constraints,” pp. 1–30, Oct. 2015. [Online]. Available: http://arxiv.org/abs/1510.06527

[8] M. Valkama, J. Pirskanen, and M. Renfors, “Signal processing challenges for applying software radio principles in future wireless terminals: an overview,” Int. J. Commun. Syst., vol. 15, no. 8, pp. 741–769, Sep. 2002.

[9] K. Loa, C.-C. Wu, S.-T. Sheu, Y. Yuan, M. Chion, D. Huo, and L. Xu, “IMT-advanced relay standards [WiMAX/LTE update],” IEEE Commun. Mag., vol. 48, no. 8, pp. 40–48, Aug. 2010.

[10] T. Schenk, RF Imperfections in High-Rate Wireless Systems. The Netherlands: Springer, 2008

[11] M. Wenk, MIMO-OFDM Testbed: Challenges, Implementations, and Measurement Results, ser. Series in Microelectronics. ETH, 2010.

[12] C. Studer, M. Wenk, and A. Burg, “System-level implications of residual transmit-RF impairments in MIMO systems,” in Proc. European Conference on Antennas and Propagation (EUCAP), Apr. 2011.

[13] E. Bjornson, M. Matthaiou, and M. Debbah, “A new look at dual-hop relaying: Performance limits with hardware impairments,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4512–4525, Nov. 2013.

[14] L. Ju-hu and W. Wei-ling, “Performance of MIMO-OFDM systems with phase noise at transmit and receive antennas,” in Proc. International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2011.

[15] J. Verlant-Chenet, J. Renard, J.-M. Dricot, P. D. Doncker, and F. Horlin, “Sensitivity of spectrum sensing techniques to RF impairments,” in Proc. IEEE Vehicular Technology Conference (VTC-Spring), May 2010.

[16] A. Zahedi-Ghasabeh, A. Tarighat, and B. Daneshrad, “Cyclo-stationary sensing of OFDM waveforms in the presence of receiver RF impairments,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2010.

[17] A. Gokceoglu, Y. Zou, M. Valkama, and P. C. Sofotasios, “Multi-channel energy detection under phase noise: analysis and mitigation,” ACM/Springer Mob. Netw Appl., vol. 19, no. 4, pp. 473–486, Aug. 2014.

[18] A.-A. A. Boulogeorgos, N. Chatzidiamantis, G. K. Karagiannidis, and L. Georgiadis, “Energy detection under RF impairments for cognitive radio,” in Proc. IEEE International Conference on Communications -Workshop on Cooperative and Cognitive Networks (ICC – CoCoNet), London, United Kingdom, Jun. 2015.

[19] J. Qi and S. Aissa, “Analysis and compensation of I/Q imbalance in MIMO transmit-receive diversity systems,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1546–1556, May 2010.

[20] O. Ozdemir, R. Hamila, and N. Al-Dhahir, “Exact average OFDM subcarrier SINR analysis under joint transmit-receive I/Q imbalance,” IEEE Trans. Veh. Technol., vol. 63, no. 8, pp. 4125–4130, Oct. 2014.

[21] A.-A. A. Boulogeorgos, P. C. Sofotasios, S. Muhaidat, M. Valkama, and G. K. Karagiannidis, “The effects of RF impairments in Vehicle-to-Vehicle communications,” in IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications – (PIMRC): Fundamentals and PHY (IEEE PIMRC 2015 – Fundamentals and PHY), Hong Kong, P.R. China, Aug. 2015.

[22] H. Zareian and V. Vakili, “Analytical BER performance of M-QAM-OFDM systems in the presence of IQ imbalance,” in Proc. IFIP International Conference on Wireless and Optical Communications Networks (WOCN), Jul. 2007.

[23] Y. Zhou and Z. Pan, “Impact of LPF mismatch on I/Q imbalance in direct conversion receivers,” IEEE Trans. Wireless Commun., vol. 10, no. 6, pp. 1702–1708, Jun. 2011.

[24] J. Qi and S. Aissa, “Compensation for HPA nonlinearity and I/Q imbalance in MIMO beamforming systems,” in Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct. 2010.

[25] T. C. Schenk, E. R. Fledderus, and P. F. Smulders, “Performance impact of IQ mismatch in direct-conversion MIMO OFDM transceivers,” in Proc. IEEE Radio and Wireless Symposium (RWS), 2007.

[26] B. Maham, O. Tirkkonen, and A. Hjorungnes, “Impact of transceiver I/Q imbalance on transmit diversity of beamforming OFDM systems,” IEEE Trans. Commun., vol. 60, no. 3, pp. 643–648, Mar. 2012.
[27] J. Qi, S. Aissa, and M.-S. Alouini, “Dual-hop amplify-and-forward co-operative relaying in the presence of Tx and Rx in-phase and quadrature-phase imbalance,” IET Commun., vol. 8, no. 3, pp. 287–298, Feb. 2014.
[28] J. Li, M. Matthaiou, and T. Svensson, “I/Q imbalance in AF dual-hop relaying: Performance analysis in Nakagami-m fading,” IEEE Trans. Commun., vol. 62, no. 3, pp. 836–847, March 2014.
[29] M. Mokhtar, A.-A. A. Boulogeorgos, G. K. Karagiannidis, and N. Al-Dhahir, “OFDM opportunistic relaying under joint transmit/receive I/Q imbalance,” IEEE Trans. Commun., vol. 62, no. 5, pp. 1458–1468, May 2014.
[30] J. Li, M. Matthaiou, and T. Svensson, “I/Q imbalance in two-way AF relaying,” IEEE Trans. Commun., vol. 62, no. 7, pp. 2271–2285, Jul. 2014.
[31] E. Bjornson, A. Papadogiannis, M. Matthaiou, and M. Debbah, “On the impact of transceiver impairments on AF relaying,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2013.
IEEE J. Sel. Areas Commun., vol. 32, no. 3, pp. 411–424, Mar. 2014.
[33] P. Rykaczewski, M. Valkama, and M. Renfors, “On the connection of I/Q imbalance and channel equalization in direct-conversion transceivers,” IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1630–1636, May 2008.
[34] G.-T. Gil, I.-H. Sohn, jin Kyu Park, and Y. H.Lee, “Joint ML estimation of carrier frequency, channel, I/Q mismatch, and DC offset in communication receivers,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 338–349, Jan. 2005.
[35] M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2335–2344, Oct. 2001
[36] P. Rykaczewski, D. Pienkowski, R. Circa, and B. Steinke, “Signal path optimization in software-defined radio systems,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1056–1064, Mar. 2005
[37] G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 673–680, Mar. 2005.
[38] H. Minn and D. Munoz, “Pilot design for channel estimation of MIMO OFDM systems with frequency-dependent I/Q imbalance,” IEEE Trans. Commun., vol. 58, no. 8, pp. 2252–2264, Aug. 2010.
[39] B. Narasimhan, D. Wang, S. Narayanan, H. Minn, and N. Al-Dhahir, “Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 3, pp. 405–417, Jun. 2009.
[40] J. Luo, A. Kortke, W. Keusgen, and M. Valkama, “Efficient estimation and pilot-free online re-calibration of I/Q imbalance in broadband direct-conversion transmitters,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2506–2520, Jul. 2014.
[41] J. Qi, S. Aissa, and M.-S. Alouini, “Analysis and compensation of I/Q imbalance in amplify-and-forward cooperative systems,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2012.
[42] A. Tarighat, R. Bagheri, and A. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3257–3268, Aug. 2005.
[43] Y. Jin, J. Kwon, Y. Lee, J. Ahn, W. Choi, and D. Lee, “Additional diversity gain in OFDM receivers under the influence of IQ imbalances,” in IEEE International Conference on Communications (ICC), Jun. 2007, pp. 5915–5920.
[44] E. Au, Z. Lei, and F. Chin, “Exploiting the diversity gain of transmitter I/Q imbalance in single-antenna OFDM systems,” in IEEE Global Telecommunications Conference (GLOBECOM), Nov. 2009, pp. 1–5.
[45] L. Anttila, “Digital front-end signal processing with widely-linear signal models in radio devices,” Ph.D. dissertation, Tampere University of Technology, Finland, Oct. 2011.
[46] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[47] B. Xu, C. Yang, and G. Bi, “Frequency-Time Block Code for frequency diversity in UWB-OFDM systems,” Journal of Electronics (China), vol. 23, no. 4, pp. 481–484, Jul. 2006.
[48] A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and series. Gordon and Breach Science Publishers, 1986, vol. 2.
[49] S. Mirabbasi and K. Martin, “Classical and modern receiver architectures,” IEEE Commun. Mag., vol. 38, no. 11, pp. 132–139, Nov. 2000.
[50] A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec. 1995.
[51] A.-A. A. Boulogeorgos, P. C. Sofotasios, B. Selim, S. Muhaidat, G. K. Karagiannidis, and M. Valkama, “Effects of RF impairments in communications over cascaded fading channels,”
IEEE Trans. Veh. Technol., vol. PP, no. 99, 2016.
[52] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 1st ed. Academic Press, 2011.
[53] D. Bartolome and A. Perez-Neira, “MMSE techniques for space diversity receivers in OFDM-based wireless LANs,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 151–160, Feb 2003.
[54] Y.-F. Chen and C.-S. Wang, “Adaptive antenna arrays for interference cancellation in OFDM communication systems with virtual carriers,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1837–1844, July 2007.
[55] T. Cui and C. Tellambura, “Joint frequency offset and channel estimation for OFDM systems using pilot symbols and virtual carriers,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1193–1202, April 2007.
[56] H. Stark and J. Woods, Probability, Statistics, and Random Processes for Engineers, 4th ed. Prentice Hall, 2012.
[57] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, 1st ed. New York: Wiley, 2000.
[58] M. Windisch and G. Fettweis, “Performance degradation due to I/Q imbalance in multi-carrier direct conversion receivers: A theoretical analysis,” in Proc. IEEE International Conference on Communications (ICC), vol. 1, Jun. 2006.
[59] B. Narasimhan, S. Narayanan, H. Minn, and N. Al-Dhahir, “Reduced-complexity baseband compensation of joint Tx/Rx I/Q imbalance in mobile MIMO-OFDM,” IEEE Trans. Commun., vol. 9, no. 5, pp. 1720–1728, May 2010.
[60] G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, and T. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. IEEE, vol. 92, no. 2, pp. 271–294, Feb. 2004.
[61] Y. Li, L. Wang, and Z. Ding, “An integrated linear programming receiver for LDPC coded MIMO-OFDM signals,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2816–2827, July 2013.
[62] A. Goldsmith, Wireless Communications. New York, NY, USA: Cambridge University Press, 2005.
[63] J. Proakis and M. Salehi, Digital Communications, ser. McGraw-Hill higher education. McGraw-Hill Education, 2007.
[64] S. Traverso, M. Ariaudo, I. Fijalkow, J.-L. Gautier, and C. Lereau, “Decision-directed channel estimation and high I/Q imbalance compensation in OFDM receivers,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1246–1249, May 2009.
[65] M. Mokhtar, A. Gomaa, and N. Al-Dhahir, “OFDM AF relaying under I/Q imbalance: Performance analysis and baseband compensation,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1304–1313, April 2013.
[66] 3GPP Technical Specification Group Radio Access Network, “Study on UMTS/LTE in 900 MHz band and coexistence with 850 MHz band,” TR 37.804, 2012.
[67] B. Crow, I. Widjaja, J. G. Kim, and P. Sakai, “IEEE 802.11 wireless local area networks,” IEEE Commun. Mag., vol. 35, no. 9, pp. 116–126, Sep 1997.
[68] A. Goldsmith and S. Wicker, “Design challenges for energy-constrained ad hoc wireless networks,” IEEE Wireless Commun. Mag., vol. 9, no. 4, pp. 8–27, Aug 2002.
[69] M. Dohler and Y. Li, Cooperative Communications: Hardware, Channel and PHY. Wiley, 2010.
[70] T.-D. Nguyen, O. Berder, and O. Sentieys, “Cooperative MIMO schemes optimal selection for wireless sensor networks,” in Proc. IEEE Vehicular Technology Conference (VTC-Spring), Apr. 2007.